GM Watch
  • Main Menu
    • Home
    • News
      • Newsletter subscription
      • News Reviews
      • News Languages
        • Notícias em Português
        • Nieuws in het Nederlands
        • Nachrichten in Deutsch
      • Archive
    • Articles
      • GM Myth Makers
      • GM Reports
      • GM Quotes
      • GM Myths
      • Non-GM successes
      • GM Firms
        • Monsanto: a history
        • Monsanto: resources
        • Bayer: a history
        • Bayer: resources
    • Videos
      • Latest Videos
      • Must see videos
      • Agriculture videos
      • Labeling videos
      • Animals videos
      • Corporations videos
      • Corporate takeover videos
      • Contamination videos
      • Latin America videos
      • India videos
      • Asia videos
      • Food safety videos
      • Songs videos
      • Protests videos
      • Biofuel myths videos
      • Index of GM crops and foods
      • Index of speakers
      • Health Effects
    • Contact
    • About
    • Donations
News and comment on genetically modified foods and their associated pesticides    
  • News
    • Newsletter subscription
    • News Reviews
    • News Languages
      • Notícias em Português
      • Nieuws in het Nederlands
      • Nachrichten in Deutsch
    • Archive
  • Articles
    • GM Myth Makers
    • GM Reports
    • GM Quotes
    • GM Myths
    • Non-GM successes
    • GM Firms
      • Monsanto: a history
      • Monsanto: resources
      • Bayer: a history
      • Bayer: resources
  • Donations
  • Videos
    • Index of speakers
    • Glyphosate Videos
    • Latest Videos
    • Must see videos
    • Health Effects
    • Agriculture videos
    • Labeling videos
    • Animals videos
    • Corporations videos
    • Corporate takeover videos
    • Contamination videos
    • Latin America videos
    • India videos
    • Asia videos
    • Food safety videos
    • Songs videos
    • Protests videos
    • Biofuel myths videos
    • Index of GM crops and foods
  • Contact
  • About
SUBSCRIBE TO REVIEWS

GMWatch Facebook cornfield banner

INTRODUCTION TO GM

GMO Myths and Facts front page.jpg

SCIENCE SUPPORTS REGULATION OF GENE EDITING

Plant tissue cultures

GENE EDITING: UNEXPECTED OUTCOMES AND RISKS

Damaged DNA on fire

GENE EDITING MYTHS AND REALITY

A guide through the smokescreen

Gene Editing Myths and Reality

ON-TARGET EFFECTS OF GENE EDITING

Damaged DNA

News Menu

  • Latest News
  • News Reviews
  • Archive
  • Languages

News Archive

  • 2022 articles
  • 2021 articles
  • 2020 articles
  • 2019 articles
  • 2018 articles
  • 2017 articles
  • 2016 articles
  • 2015 articles
  • 2014 articles
  • 2013 articles
  • 2012 articles
  • 2011 articles
  • 2010 articles
  • 2009 articles
  • 2008 articles
  • 2007 articles
  • 2006 articles
  • 2005 articles
  • 2004 articles
  • 2003 articles
  • 2002 articles
  • 2001 articles
  • 2000 articles

Please support GMWatch

Donations

You can donate via Paypal or credit/debit card.

Some of you have opted to give a regular donation. This is greatly appreciated as it helps place us on a more stable financial basis. Thank you for your support!

Pest becoming resistant to stacked-trait Bt maize in South Africa

  • Print
  • Email
Details
Published: 10 November 2018
Twitter

instar larva of B. fusca

The African maize stalkborer pest is already largely resistant to single-gene Bt maize and is showing first signs of resistance to stacked-trait Bt maize

The study below assesses the evolution of resistance of the African maize stalkborer pest (Busseola fusca) to GM Bt insecticidal maize of single-gene and stacked-gene types.

Regarding the single-gene maize types, the researchers found rapidly evolved resistance: "Pre-release evaluation of the single-gene event showed very low larval survival on Bt maize leaf tissue while studies 10 yr later and the current study reported survival of up to 40% and 100% on Cry1Ab maize, respectively."

The study found that the stacked-gene types of maize were more effective than single-gene types in combatting the pest – but resistance appears to be evolving in the stacked-gene maize types too. The study concludes, "While high levels of resistance of B. fusca populations to Cry1Ab maize were observed in this study, no population showed resistance against the stacked event that expresses Cry1A.105+Cry2Ab2 proteins. However, although no larvae completed their life cycle on the stacked-gene event, the increased numbers of days until 50% mortality was reached are comparatively longer than those reported earlier which could show a shift in susceptibility. This study confirms resistance of B. fusca to Bt maize that expresses Cry1Ab proteins and highlights the importance of continuous monitoring of the resistance status of this pest."
---
Resistance status of Busseola fusca (Lepidoptera: Noctuidae) populations to single- and stacked-gene Bt maize in South Africa 
Strydom, E., Erasmus, A., du Plessis, H., & Van den Berg, J. Journal of economic entomology (2018). 
https://academic.oup.com/jee/advance-article-abstract/doi/10.1093/jee/toy306/5128789

Abstract

Transgenic Bt maize expressing Cry insecticidal δ-endotoxins of Bacillus thuringiensis has been cultivated in South Africa for the control of Busseola fusca since 1998. Busseola fusca is resistant to Cry1Ab Bt maize at many localities throughout the maize production region. Pre-release evaluation (1994–1996) of the inherent susceptibility and post-release assessments (1998–2011) of resistance status of B. fusca focused on a limited number of pest populations. This study reports the current levels of susceptibility of 10 B. fusca populations evaluated between 2013 and 2017 and compared this data with previously reported data on the survival of this pest on Bt maize, including data of pre-release evaluations done during 1994 and 1995. Larval feeding bioassays in which plant tissue of maize events expressing either Cry1Ab or Cry1A.105+Cry2Ab2 (stacked event) proteins were conducted and survival and different life history parameters recorded. Results show a shift in levels of susceptibility of B. fusca to Bt maize. Pre-release evaluation of the single-gene event showed very low larval survival on Bt maize leaf tissue while studies 10 yr later and the current study reported survival of up to 40% and 100% on Cry1Ab maize, respectively. While no larvae completed their life cycle on the stacked event, higher LT50 values in this study indicate a shift in susceptibility of B. fusca to the stacked-gene event and highlight the importance of baseline information and monitoring of pest populations for their susceptibility to Bt maize.

Menu

Home

Subscriptions

News Archive

News Reviews

Videos

Articles

GM Myth Makers

GM Reports

GM Myths

GM Quotes

Non-GM Successes

Contacts

Contact Us

About

Facebook

Twitter

Donations

Content 1999 - 2022 GMWatch.
Web Development By SCS Web Design