GM Watch
  • Main Menu
    • Home
    • News
      • Newsletter subscription
      • Daily Digest
      • News Reviews
      • News Languages
    • Articles
      • GM Myth Makers
      • GM Reports
      • GM Quotes
      • GM Myths
      • Non-GM successes
      • GM Firms
        • Monsanto: a history
        • Monsanto: resources
        • Bayer: a history
        • Bayer: resources
    • Videos
      • Latest Videos
      • Must see videos
      • Cornell videos
      • Agriculture videos
      • Labeling videos
      • Animals videos
      • Corporations videos
      • Corporate takeover videos
      • Contamination videos
      • Latin America videos
      • India videos
      • Asia videos
      • Food safety videos
      • Songs videos
      • Protests videos
      • Biofuel myths videos
      • Index of GM crops and foods
      • Index of speakers
      • Health Effects
    • Contact
    • About
    • Donations
    • How donations will help us
News and comment on genetically modified foods and their associated pesticides    
  • News
    • Latest News
    • Newsletter subscription
    • News Reviews
    • News Languages
      • Notícias em Português
      • Nieuws in het Nederlands
      • Nachrichten in Deutsch
    • Archive
      • 2021 articles
      • 2020 articles
      • 2019 articles
      • 2018 articles
      • 2017 articles
      • 2016 articles
      • 2015 articles
      • 2014 articles
      • 2013 articles
      • 2012 articles
      • 2011 articles
      • 2010 articles
      • 2009 articles
      • 2008 articles
      • 2007 articles
      • 2006 articles
      • 2005 articles
      • 2004 articles
      • 2003 articles
      • 2002 articles
      • 2001 articles
      • 2000 articles
  • Articles
    • GM Myth Makers
    • GM Reports
    • How donations will help us
    • GM Quotes
    • GM Myths
    • Non-GM successes
    • GM Firms
      • Monsanto: a history
      • Monsanto: resources
      • Bayer: a history
      • Bayer: resources
  • Videos
    • Index of speakers
    • Glyphosate Videos
    • Latest Videos
    • Must see videos
    • Health Effects
    • Cornell videos
    • Agriculture videos
    • Labeling videos
    • Animals videos
    • Corporations videos
    • Corporate takeover videos
    • Contamination videos
    • Latin America videos
    • India videos
    • Asia videos
    • Food safety videos
    • Songs videos
    • Protests videos
    • Biofuel myths videos
    • Index of GM crops and foods
  • Contact
  • About
  • Donations
SUBSCRIBE TO REVIEWS

LATEST NEWS

  • International Take Action: Tell US Senate: Vote No on Mr Monsanto (Tom Vilsack)

  • How to respond to the UK consultation on the deregulation of gene editing

  • Japan's first genome-edited food, a tomato, gets green light for distribution

  • New report shows EFSA systematically ignores risks of GM crops and foods

  • Brexit voters reject lower food standards

GMWatch Facebook cornfield banner

SCIENCE SUPPORTS REGULATION OF GENE EDITING

Plant tissue cultures

GENE EDITING: UNEXPECTED OUTCOMES AND RISKS

Damaged DNA on fire

GENE-EDITED CROPS & FOODS

Help stop the new threat

News Menu

  • Latest News
  • News Reviews
  • Archive
  • Languages

News Archive

  • 2021 articles
  • 2020 articles
  • 2019 articles
  • 2018 articles
  • 2017 articles
  • 2016 articles
  • 2015 articles
  • 2014 articles
  • 2013 articles
  • 2012 articles
  • 2011 articles
  • 2010 articles
  • 2009 articles
  • 2008 articles
  • 2007 articles
  • 2006 articles
  • 2005 articles
  • 2004 articles
  • 2003 articles
  • 2002 articles
  • 2001 articles
  • 2000 articles

Please support GMWatch

Donations

You can donate via Paypal or credit/debit card.

Some of you have opted to give a regular donation. This is greatly appreciated as it helps place us on a more stable financial basis. Thank you for your support!

New research finds GM crop-related herbicides cause antibiotic resistance

  • Print
  • Email
Details
Published: 17 November 2017
Twitter

E.coli Bacteria

Farm workers in rural areas and in children in urban settings who are exposed to herbicides may be at risk if they are also on antibiotics

The active ingredients of the commonly used herbicides, RoundUp, Kamba and 2,4-D (glyphosate, dicamba and 2,4-D, respectively), each alone cause antibiotic resistance at concentrations well below label application rates, a new study led by researchers at the University of Canterbury in New Zealand has found.

Professor Jack Heinemann of the School of Biological Sciences in UC’s College of Science said the key finding of the research was that “bacteria respond to exposure to the herbicides by changing how susceptible they are to antibiotics used in human and animal medicine.”

The herbicides studied are three of the most widely used in the world, Prof Heinemann said. They are also used on crops that have been genetically modified to tolerate them.

The effect was not seen at herbicide concentrations that are presently allowed for food (called Maximum Residue Limits, MRL). However, the effect was seen at concentrations well below those applied to plants (application rates). Therefore, the authors believe, the effect is most likely to arise in farm workers in rural areas and in children in urban settings who are exposed to herbicides, if they are also on antibiotics.

Prof Heinemann said, “They are among the most common manufactured chemical products to which people, pets and livestock in both rural and urban environments are exposed. These products are sold in the local hardware store and may be used without training, and there are no controls that prevent children and pets from being exposed in home gardens or parks. Despite their ubiquitous use, this University of Canterbury research is the first in the world to demonstrate that herbicides may be undermining the use of a fundamental medicine - antibiotics.”

In addition, the new paper finds that added ingredients (surfactants) that are commonly used in some herbicide formulations and processed foods also cause antibiotic resistance. An antibiotic resistance response was caused by both the tested surfactants, Tween80 and CMC. Both are also used as emulsifiers in foods like ice cream and in medicines, and both cause antibiotic resistance at concentrations allowed in food and food-grade products.

Commenting on the regulatory implications of his team's findings, Prof Heinemann said: “The sub-lethal effects of industrially manufactured chemical products should be considered by regulators when deciding whether the products are safe for their intended use."

“More emphasis needs to be placed on antibiotic stewardship compared to new antibiotic discovery. Otherwise, new drugs will fail rapidly and be lost to humanity.”

The researchers first observed herbicide-related antibiotic resistance in their paper published in the American Society of Microbiology’s journal mBio in 2015.

After the paper appeared, Monsanto spokesperson Charla Lord commented that it was still not known whether the active ingredients or the added ingredients in the herbicides were responsible. "It is difficult to separate the effect of surfactants, which are known to have an impact on cultured microbes, from the active ingredients," she said.

The new follow-up study was conducted in order to answer that very question. It found that both the active and the added ingredients were responsible.

Antibiotic resistance is the cause of nearly a million additional deaths worldwide from infectious diseases, Prof Heinemann says.

“The United States, for example, estimates that more than two million people are sickened every year with antibiotic-resistant infections, with at least 23,000 dying as a result. By 2050, resistance is estimated to add 10 million annual deaths globally with a cumulative cost to the world economy of US$100 trillion. In other words, roughly twice the population of New Zealand will be lost annually to antibiotic resistance.”

Whether these herbicides and their added ingredients act as antibiotics at realistic doses in humans and animals remains to be established experimentally.

Background

Herbicides are chemicals used to control weeds. Because they kill organisms, they are biocides. As their primary purpose is to kill plants, their effects on some non-target organisms are not as well studied.

Antibiotics are also biocides. Antibiotic resistance allows bacteria that previously could be controlled by antibiotics to continue to cause disease and remain infectious for longer, even in the presence of antibiotics. Resistance to at least one major clinical antibiotic is now found in all human pathogens, and some important pathogens can be resistant to all but one antibiotic, or even all antibiotics. Even in wealthy countries, antibiotic resistance is responsible for billions of dollars of increased health care costs, additional suffering and tens of thousands of deaths each year.

Many biocides have effects on either target or non-target organisms at concentrations that do not kill. These are called sub-lethal effects. When pesticides, including herbicides, are reviewed for their safety by regulators, the focus is on acute and sometimes chronic toxicity, using mortality as an endpoint. Much less information is sought on potential sub-lethal effects, particularly for microbes.

“Where this information is sought, it is usually only for people or animals. We are unaware of any regulator ever considering the risk of sub-lethal effects on bacteria. That is what makes this new research so important.”


The study: Kurenbach B et al (2017). Herbicide ingredients change Salmonella enterica sv. Typhimurium and Escherichia coli antibiotic responses. Microbiology, 17 November 2017. doi: 10.1099/mic.0.000573
http://mic.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.000573

Information on the senior researcher:
http://www.canterbury.ac.nz/science/contact-us/people/jack-heinemann.html

Previous paper:
http://mbio.asm.org/content/6/2/e00009-15

Menu

Home

News

News Archive

News Reviews

Videos

Articles

GM Myth Makers

GM Reports

GM Myths

GM Quotes

How Donations Will Help Us

Contacts

Contact Us

About

Facebook

Twitter

RSS

Content 1999 - 2021 GMWatch.
Web Development By SCS Web Design