Print

1.Biotech agriculture Time to take GM seriously
2.GM and climate change A hungry world needs answers on GM crops

NOTE: Rikki Stancich's excellent article (item 1) in the magazine Ethical Corporation walks a very clear path through current biotech industry hype - and finds it seriously wanting.

The article also includes a frank admission from a spokesperson for the biotech industry-lobby group EuropaBio that Roundup Ready (GM) crops have led to 'the weeds themselves' now being 'Roundup resistant, which has resulted in much higher applications of Roundup along with a host of other chemicals'.

All of which makes it hard to explain the article's title - 'Time to take GM seriously' - and the magazine's accompanying editorial (item 2). The latter punts GM for all its worth, largely on the basis of the very hype the magazine's own article so effectively demolishes! Less charitable observers might suggest this reflects a concern not to offend Ethical Corporation's corporate client base.

EXTRACTS: [on drought resistance] Neither Monsanto nor Bayer LifeSciences was willing to provide any documentation to support their claims to drought-resistant crop strains. Nor were BIO and EuropaBio forthcoming with any evidence substantiating drought resistance in crops.

[on biofuels] The market for biofuels could unlock the global market for the green biotech industry. But current research has thrown up a raft of reasons as to why the biofuel model is inherently at odds with its goal of providing sustainable renewables. Competition for land resources, deforestation, diversion of food crops into fuel crops, to name a few. Hence the promise of significant gains for the biotech industry on the back of biofuels may yet prove tenuous.

[on yields and inputs] The assertion that GM crops in general yield higher productivity has been challenged by several studies, including one carried out by the US Department of Agriculture. This particular study suggests that yields of GM crops are lower than traditional crops and that the use of inputs (herbicides and pesticides) has, in fact, increased.

[on chemical use] EuropaBio's Nathalie Moll also admitted that greater applications of Roundup herbicide were being applied. She says that is because 'farmers have rotated RR crops, usually soya and maize, to the point that the weeds themselves are now Roundup resistant, which has resulted in much higher applications of Roundup along with a host of other chemicals'.

---

1.Special Reports:
GM crops: Biotech agriculture
Time to take GM seriously
Rikki Stancich Ethical Corporation, 7 February 2008
http://www.ethicalcorp.com/content.asp?ContentID=5684

Biotechnology companies say their seeds offer a green answer to the threat of global food shortages. But the evidence for that claim is mixed at best

Over recent decades, western consumers have reaped the benefits of a farming revolution and its plentiful harvest. The vast economies of scale delivered by agro farming and globalisation have led to a downward trend in food prices, creating the illusion that food can only get cheaper.

But the cost of cheap food has been high. Contamination, degradation and the depletion of finite natural resources have been the direct result of greater mechanisation, intensive use of inputs and extensive irrigation systems. Now, as oil and gas fields near exhaustion, the days of input-dependent farming appear to be numbered.

Yet while the rest of the world contemplates the pending food scarcity and climate change crises, biotechnology companies are quietly confident that they hold the solution. The industry asserts that genetically modified crops enable better pest control, reduced spraying, safety for non-target species, higher stress tolerance and more consistent yields. In short, the industry believes that green biotechnologies provide a secure and sustainable food and energy solution.

Zero tolerance

A widely held view is that Europe's stance on GM greatly influences that of the rest of the world. If Europe decides to relax its rigid GM regulations, the biotech industry will see significant gains elsewhere as well. It appears that current market conditions may provide biotech companies with the leverage needed to break into these markets.

Referring to the European Union's rejection of shipments of livestock feed contaminated with GM 'Hercules Maize' last year, Nathalie Moll, executive director at EuropaBio, a European biotech industry association, says the EU's resistance to GM produce in particular, Europe's 'zero tolerance' on GM-contaminated grain imports may further drive up food prices. She predicts: 'The zero tolerance policy is likely to bring the European livestock industry to its knees.'

Moll says the current market share of GM technology in the Americas, from where Europe imports the bulk of its livestock grain, will be augmented by a batch of 'Roundup Ready' seeds seeds genetically modified to contain the glyphosate-based herbicide, Roundup due to hit the markets in 2009. She suggests that EU resistance to GM may result in Europe switching from being a net exporter of meat to a net importer. This could have staggering implications for the rest of the world in terms of food prices.

Biotech and biofuels

Competing demand for coarse grain from the biofuels industry and for livestock feed has placed an upward pressure on grain prices, creating a knock-on effect of higher meat prices. The increase has been to the extent that last year, US beef and pork producers called for the non-renewal of tax credits for ethanol and import tariffs on ethanol.

In the US, 73 per cent of maize, 87 per cent of cotton and 91 per cent of soya is grown from GM seed, according to current figures published by the Economic Research Service of the US Department of Agriculture. All three are key biofuel crops.

Brent Erickson, executive director at Biotech Industry Organization (BIO), says increased demand for cellulosic ethanol has led to research into enhancing existing crops, such as maize, with enzymes specifically geared towards ethanol production.

He says that while biofuels will lower the cost of farming inputs, higher yielding GM crops will simultaneously prevent a shift in acreage out of food and into fuel feedstock production, given that biotechnology can make existing acreage more productive.

But a recent report published by Advanced Economic Solutions, a consulting company for the food industry, suggests otherwise. In the US, maize earmarked for ethanol production now accounts for 25 per cent of total maize use. In light of the 20 per cent increase in the number of maize acres planted in 2007, an 'acreage battle' is highly likely, concludes the report. It also revealed that a key driver behind the inflated price of maize and other food inputs has been ethanol production.

Companies such as Inventure Chemicals are developing a variety of second-generation feedstocks, including algae, to create biodiesel and ethanol. Algae feedstock is more cost-effective than other biofuel feedstocks, says Mark Tegen, Inventure’s chief executive.

A new strain of eucalypt engineered by a team of US and Taiwanese scientists at the Taiwan Forestry Research Institute has been designed to sequester three times the carbon of traditional species.

However, a research paper published in September last year casts doubts on the viability of biofuels altogether. Highlighting the area of land required to produce a unit of motive power, it revealed that sugarcane ethanol requires 214 square metres while eucalypt cellulosic ethanol requires 1,917 square metres. A photovoltaic cell an electric solar panel requires only three square metres.

The paper, authored by Tad Patzek at the University of California, Berkley, demonstrates that each square metre of solar cells could replace up to 650 hectares of biofuel feedstock plantations. It concluded: 'Even mediocre solar cells ”¦ are at least 100 times more efficient than the current major agrofuel systems.'

In March last year, European heads of state set a target of meeting 5.75 per cent of transport fuel needs from biofuel by 2010. A study carried out by the directorate general for agriculture revealed that this would result in a switch of almost 20 per cent of currently available arable land out of food and into biofuel crops. In this respect, the promise of enhanced land productivity and second-generation biofuel crops could gain greater purchase for the biotech industry.

Last year, US president George Bush pushed through the Energy Independence and Security Act of 2007, which contains the new renewable fuel standard. The RFS explicitly supports production of 36 billion gallons (137 billion litres) of biofuels, including cellulosic ethanol and advanced biofuels.

Jens Riese, a biochemist and biomass expert at McKinsey Consulting, estimates that the RFS will deliver revenues to the ethanol industry of up to $70 billion, with a revenue opportunity for biotech companies of up to $5 billion.

Climate change

Higher yielding crops with lower inputs improve land efficiency with lower environmental risk, the biotech industry says. But the term 'higher yield' does not relate to physically higher yielding crops in the form of, say, three-headed maize stalks. Instead, it has to do with traits introduced to make the strains resistant to pests and herbicides.

'Bt crops' contain the naturally occurring soil bacterium bacillus thuringiensis, a pesticide that was traditionally sprayed onto crops as an insecticide. Given that Bt crops have this built-in protection, yields are higher than non-Bt crops in the absence of spraying. This, says the industry, also delivers environmental benefits, given the subsequent reduction in pesticide use.

In turn, lower spraying requirements result in fewer spray runs (relative to conventional crops). And so, according to EuropaBio, lower spraying requirements generate fuel savings. In 2005 this resulted in permanent savings in carbon dioxide emissions of about 962 million kg (arising from reduced fuel use of 356 million litres).

Herbicide tolerant crops are genetically engineered to contain the chemical herbicides bromoxynil, in the case of BXN cotton, and glyphosate (better known as 'Roundup', the herbicide manufactured by Monsanto) in the case of Roundup Ready (RR) cotton.

These crops are said to be higher yielding than conventional crops. This is only because conventional crops sprayed with these herbicides would die, along with all other plant life that the herbicide came into contact with. But because the herbicides form part of the plant’s genetic make-up, the BXN and RR varieties can withstand these herbicides.

Thus, the introductions of BXN cotton and Roundup Ready cotton are accompanied by an increase in the use of bromoxynil and Roundup, with a decline in the use of other herbicides that had been used previously.

Monsanto, and indeed much of the agricultural and biotech sectors tout glyphosate-based herbicides as herbicides of 'low toxicity and environmental friendliness'. The biotech industry claims that GMX and RR seeds enable farmers to reduce their ecological footprint, by applying herbicides of lower toxicity at a reduced volume.

However, a paper published by Caroline Cox in the 'Journal of Pesticide Reform', October 2000, demonstrates how glyphosate-containing products are acutely toxic to animals, including humans and are classified by the Environmental Protection Agency (EPA) as 'highly persistent'.

Does GM deliver?

According to Dr Charles Benbrook, a consultant on agricultural policy, science and regulatory issues, 'Contrary to industry’s claims, [the] RR soyabean requires more, not less, herbicide than [a] conventional soyabean.' His research reveals RR soyabean crops to produce 5 per cent to 10 per cent less yield per acre as against other identical varieties grown under similar soil conditions.

EuropaBio's Nathalie Moll also admitted that greater applications of Roundup herbicide were being applied. She says that is because 'farmers have rotated RR crops, usually soya and maize, to the point that the weeds themselves are now Roundup resistant, which has resulted in much higher applications of Roundup along with a host of other chemicals'.

The International Survey of Herbicide-Resistant Weeds indicates that, globally, 181 species of Roundup-resistant 'superweeds' can be found in about 270,000 fields. Moll added that although Roundup 'kills everything', it is far less toxic and takes half the time to biodegrade than other available herbicides.

The assertion that GM crops in general yield higher productivity has been challenged by several studies, including one carried out by the US Department of Agriculture. This particular study suggests that yields of GM crops are lower than traditional crops and that the use of inputs (herbicides and pesticides) has, in fact, increased.

Can GM feed the world?

Annette Josten, a spokeswoman for Bayer CropScience, says that from the climate change perspective, biotechnologies have a lot to offer, in particular, drought-resistant crops. She said that while Bayer was working on drought-resistant strains of canola, rice, cotton and maize, none were likely to be market-ready before 2015.

Monsanto claims that its drought-tolerant maize being trialled in South Africa may be ready for commercialisation as early as 2010 and studies on drought-tolerant soyabeans and cotton are in the pipeline.

But independent studies suggest that this is unlikely. The African Centre for BioSafety report on Monsanto's drought-tolerant maize concluded: 'The coding for drought tolerance in particular is a long way off for current scientific knowledge, with some geneticists admitting that even hoping for drought tolerance in the next 10 or 20 years may be too ambitious.'

Pete Riley at GM Freeze, an alliance of UK organisations against GM technologies, dismisses the possibility of drought-resistant crops, calling it a 'load of rubbish'. He says: 'If it doesn't rain, the seed doesn't germinate. If, by some miracle seeds do germinate in dry conditions, it has nothing to do with the GM trait, but will be because of the parent plant.'

Neither Monsanto nor Bayer LifeSciences was willing to provide any documentation to support their claims to drought-resistant crop strains. Nor were BIO and EuropaBio forthcoming with any evidence substantiating drought resistance in crops.

The market for biofuels could unlock the global market for the green biotech industry. But current research has thrown up a raft of reasons as to why the biofuel model is inherently at odds with its goal of providing sustainable renewables. Competition for land resources, deforestation, diversion of food crops into fuel crops, to name a few. Hence the promise of significant gains for the biotech industry on the back of biofuels may yet prove tenuous.

[ends]

[TABLE - based on ISAAA information]

Green biotech going global

* By 2015, more than 20 million farmers will plant 200 million hectares of biotech crops in about 40 countries.

* At the beginning of 2007, biotech crop area accounted for 102 million hectares worldwide.

* Since its introduction in 1996, there has been a 60-fold increase in the application of biotechnology the highest-ever adoption-rate of any crop technology.

* Worldwide, 10.3 million farmers plant biotech crops.

* More than 90 per cent of farmers growing biotech crops last year 9.3 million were small, resource-poor farmers from the developing world.

* The growth of biotech crop adoption was substantially higher in the developing world at 21 per cent versus the industrialised nations where adoption grew just 9 per cent.

* Developing countries now account for 40 per cent of the global biotech crop area.

Source: International Service for the Acquisition of Agri-Biotech Applications ...

[Table based on Etc. information]

Top ten GM seed companies

The top three companies Monsanto, Dupont and Syngenta account for $8.6 billion or 44 per cent of the total proprietary seed market.

Company 2006 seed sales (millions0

1. Monsanto (US) $4,028

2. Dupont (US) $2,781

3. Syngenta (Switzerland) $1,743

4. Groupe Limagrain (France) $1,035

5. Land O’Lakes (US) $756

6. KWS AG (Germany) $615

7. Bayer Crop Science (Germany) $430

8. Delta & Pine Land (US) (acquisition by Monsanto pending) $418 9. Sakata (Japan) $401 10. DLF-Trifolium (Denmark) $352

Source: ETC Group, action group on Erosion, Technology and Concentration, Canada

---

2.Editorials: GM and climate change A hungry world needs answers on GM crops
Genetically modified food has a role to play in addressing the impending climate-related food crisis
Ethical Corporation, 7 February 2008
http://www.ethicalcorp.com/content.asp?ContentID=5686

The food riots that hit Indonesia last month and drew 10,000 angry protestors onto the streets of Jakarta offer a flavour of the trouble in store for governments and companies over the coming years.

Indonesians have been outraged at soaring soya bean prices, which have risen almost 90 per cent over the past year. The rises have occurred in part because of shortages in global soya markets as farmers in the US and Latin America shift production into crops for biofuels.

Concerns about biofuels eating up valuable agricultural land are by now well known. But as a longer-term pressure, climate change could have an even more devastating impact on food supply. It is one that could lead to further riots in Indonesia, and beyond.

Climate change will cause a net drop in food production. Yes, there may be grapes in Greenland, but farmers in vast swathes of the global south will face tougher conditions. Food growing capacity in India is set to drop by almost 40 per cent by 2080 compared with current levels; and developing countries as a whole will experience a net loss in food production of more than 20 per cent, according to a 2007 study by the Peterson Institute for International Economics in the US.

Faced with the emerging food crisis, made worse by a rising global population, policymakers have a duty to look at all possible options. That includes an unlikely and often vilified candidate genetically modified crops.

How green is GM?

Biotechnology companies can help answer the climate-related food crisis in three ways: reducing the greenhouse gas emissions associated with farming; developing crops better able to withstand extreme weather brought about by global warming; and making biofuels production more efficient.

Agriculture already accounts for 17 per cent of global greenhouse gas emissions. GM crops can offer some modest cuts to farming's carbon footprint with non-till varieties of food and feed that do not require ploughing, meaning that more carbon is kept or sequestered in the soil. [research shows organic agriculture is far more effective; and no-till is not dependent on GM as even USDA data shows]

And there is potential for engineering new crops that require less fertiliser. Swiss biotech firm Arcadia Biosciences is developing a strain of rice that grows with less nitrogen fertiliser which is made from natural gas and releases nitrous oxide, a gas 300 times more potent than carbon dioxide. Arcadia wants Chinese farmers to be able to earn carbon credits for the reduced-fertiliser crop, which it hopes to launch by 2012.

Another area where GM technology can help is developing crops with traits to resist extreme weather that will become more frequent because of a changing climate. GM crops cannot make rain fall, but drought-resistant crops could play a vital role in helping farmers in water-stressed areas, according to the World Bank-funded Consultative Group on International Agriculture Research (CGIAR).

A third way that GM crops can address climate change is through their use as biofuels. Biotech firms are cashing in on the biofuels boom, aided by US government subsidies and European Union targets to increase the use of biofuels in transport. The industry claims it can boost yields for these crops, helping to avoid an 'acreage battle' between land for food and land for fuel. But like so much about GM, this claim remains hotly contested.

And here is the real problem. No conclusive evidence that GM crops are unsafe or bad for the environment exists. Critics argue GM 'techno-fixes' are an overly expensive way of addressing food shortages. They point to studies showing that GM crops have disastrous environmental impacts, such as biodiversity loss and more, not less, use of herbicides. But every one of their claims is disputed by the industry.

What is desperately needed is clear-eyed, objective research on where GM crops can be most effective in making sure food supply is not just plentiful, but sustainable. To this end, inventions such as low fertiliser rice or drought-resistant crops are exciting developments. These experiments should be encouraged.

Here the CGIAR can offer a guide. The network announced in December that it would double its annual climate change research budget from $70 million to $140 million. Part of this work, it says, will cover 'breeding seeds for stress tolerance'. CGIAR’s gene bank holds samples of 530,000 seeds in public trust. Three per cent of its research is currently devoted to GM technology.

That may not sound much. Certainly, it is not as high a percentage as Monsanto and its peers would like. But it also suggests a reasonable tolerance of biotechnology from scientists that goes way beyond that of many anti-GM campaigners. Clearly, GM alone cannot solve the world’s emerging food crisis. But there could be areas where GM crops can step in where conventional breeding techniques have so far failed.

Biotech firms too should start producing their own, independently assessed climate change reports. The potential benefits of GM in combating global warming, if verified, could mark the start of its rehabilitation in the eyes of the general public. Climate change concerns have already made the UK government rethink its policy on nuclear power. In time, it and other European lawmakers may have to reconsider their stance on GM.

This email address is being protected from spambots. You need JavaScript enabled to view it.